References

Allaire J, Xie Y, Dervieux C, et al (2023) Rmarkdown: Dynamic documents for r. R package version 2.22, https://CRAN.R-project.org/package=rmarkdown
Benjamin MA, Rigby RA, Stasinopoulos DM (2003) Generalized autoregressive moving average models. Journal of the American Statistical Association 98:214–223. https://doi.org/10.1198/016214503388619238
Benson B, Magnuson J, Sharma S (2020) Global lake and river ice phenology database. Version 1 (G01377). National Snow and Ice Data Center, Boulder, CO, USA
Berk RA (2016) Statistical learning from a regression perspective, 2nd edn. Springer, Switzerland
Bickel PJ, Götze F, Zwet WR van (1997) Resampling fewer than n observations: Gains, losses, and remedies for losses. Statistica Sinica 7:1–31
Bollerslev T (1986) Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31:307–327. https://doi.org/10.1016/0304-4076(86)90063-1
Bollerslev T (2009) Glossary to ARCH (GARCH). In: Volatility and time series econometrics: Essays in honour of Robert F. Engle. SSRN
Borchers HW (2022) Pracma: Practical numerical math functions. R package version 2.4.2, https://CRAN.R-project.org/package=pracma
Box GEP, Jenkins GM (1976) Time series analysis: Forecasting and control. Holden-Day, San Francisco, CA, USA
Brockwell PJ, Davis RA (2002) Introduction to time series and forecasting, 2nd edn. Springer, New York, NY, USA
Brooks C, Burke SP (2003) Information criteria for GARCH model selection. The European Journal of Finance 9:557–580. https://doi.org/10.1080/1351847021000029188
Bühlmann P (2002) Bootstraps for time series. Statistical Science 17:52–72. https://doi.org/10.1214/ss/1023798998
Bunn A, Korpela M, Biondi F, et al (2022) dplR: Dendrochronology program library in r. R package version 1.7.4, https://github.com/AndyBunn/dplR
Cabilio P, Zhang Y, Chen X (2013) Bootstrap rank tests for trend in time series. Environmetrics 24:537–549. https://doi.org/10.1002/env.2250
Caeiro F, Mateus A (2022) Randtests: Testing randomness in r. R package version 1.0.1, https://CRAN.R-project.org/package=randtests
Campbell SD, Diebold FX (2005) Weather forecasting for weather derivatives. Journal of the American Statistical Association 100:6–16. https://doi.org/10.1198/016214504000001051
Campos MC, Costa JL, Quintella BR, et al (2008) Activity and movement patterns of the Lusitanian toadfish inferred from pressure-sensitive data-loggers in the Mira estuary (Portugal). Fisheries Management and Ecology 15:449–458. https://doi.org/10.1111/j.1365-2400.2008.00629.x
Chatfield C (2000) Time-series forecasting. CRC Press, Boca Raton, FL, USA
Chatterjee S, Hadi AS (2006) Regression analysis by example, 4th edn. John Wiley & Sons, Hoboken, NJ, USA
Chatterjee S, Simonoff JS (2013) Handbook of regression analysis. John Wiley & Sons, Hoboken, NJ, USA
Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association 74:829–836. https://doi.org/10.1080/01621459.1979.10481038
Cochrane D, Orcutt GH (1949) Application of least squares regression to relationships containing auto-correlated error terms. Journal of the American Statistical Association 44:32–61. https://doi.org/10.2307/2280349
Cripps E, Dunsmuir WTM (2003) Modeling the variability of Sydney Harbor wind measurements. Journal of Applied Meteorology 42:1131–1138. https://doi.org/10.1175/1520-0450(2003)042<1131:MTVOSH>2.0.CO;2
Croissant Y, Graves S (2022) Ecdat: Data sets for econometrics. R package version 0.4-2, https://www.r-project.org
Davison AC, Hinkley DV (1997) Bootstrap methods and their application. Cambridge University Press, Cambridge, UK
Dean RT, Dunsmuir WTM (2016) Dangers and uses of cross-correlation in analyzing time series in perception, performance, movement, and neuroscience: The importance of constructing transfer function autoregressive models. Behavior Research Methods 48:783–802. https://doi.org/10.3758/s13428-015-0611-2
Degras D, Xu Z, Zhang T, Wu WB (2012) Testing for parallelism among trends in multiple time series. IEEE Transactions on Signal Processing 60:1087–1097. https://doi.org/10.1109/TSP.2011.2177831
Dickey DA, Fuller WA (1979) Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association 74:427–431. https://doi.org/10.2307/2286348
Duguay CR, Brown L, Kang K-K, Kheyrollah Pour H (2013) State of the climate in 2012: Lake ice. Bulletin of the American Meteorological Society 94:S124–S126. https://doi.org/10.1175/2013BAMSStateoftheClimate.1
Dunn PK, Smyth GK (1996) Randomized quantile residuals. Journal of Computational and Graphical Statistics 5:236–244. https://doi.org/10.2307/1390802
Efron B (1979) Bootstrap methods: Another look at the jackknife. The Annals of Statistics 7:1–26. https://doi.org/10.1214/aos/1176344552
Engle RF (1982) Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50:987–1007. https://doi.org/10.2307/1912773
Engle RF, Granger CWJ (1987) Co-integration and error correction: Representation, estimation, and testing. Econometrica 55:251–276. https://doi.org/10.2307/1913236
Esterby SR (1996) Review of methods for the detection and estimation of trends with emphasis on water quality applications. Hydrological Processes 10:127–149. https://doi.org/10.1002/(SICI)1099-1085(199602)10:2<127::AID-HYP354>3.0.CO;2-8
Eun CS, Lee J (2010) Mean-variance convergence around the world. Journal of Banking & Finance 34:856–870. https://doi.org/10.1016/j.jbankfin.2009.09.016
Fasiolo M, Nedellec R (2021) mgcViz: Visualisations for generalized additive models. R package version 0.1.9, https://github.com/mfasiolo/mgcViz
Gastwirth JL, Gel YR, Hui WLW, et al (2023) Lawstat: Tools for biostatistics, public policy, and law. R package version 3.6, https://CRAN.R-project.org/package=lawstat
Granger CWJ (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37:424–438. https://doi.org/10.2307/1912791
Graves S (2019) FinTS: Companion to tsay (2005) analysis of financial time series. R package version 0.4-6, https://r-forge.r-project.org/projects/fints/
Gupta PL, Gupta RC, Tripathi RC (1996) Analysis of zero-adjusted count data. Computational Statistics & Data Analysis 23:207–218. https://doi.org/10.1016/S0167-9473(96)00032-1
Hall P, Van Keilegom I (2003) Using difference-based methods for inference in nonparametric regression with time series errors. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 65:443–456. https://doi.org/10.1111/1467-9868.00395
Hansen PR, Lunde A (2005) A comparison of volatility models: Does anything beat a GARCH(1, 1)? Journal of Applied Econometrics 20:873–889. https://doi.org/10.1002/jae.800
Härdle W, Horowitz J, Kreiss J-P (2003) Bootstrap methods for time series. International Statistical Review 71:435–459. https://doi.org/10.1111/j.1751-5823.2003.tb00485.x
Hastie TJ, Tibshirani RJ, Friedman JH (2009) The elements of statistical learning: Data mining, inference, and prediction, 2nd edn. Springer, New York, NY, USA
Hirsch RM, Slack JR, Smith RA (1982) Techniques of trend analysis for monthly water quality data. Water Resources Research 18:107–121. https://doi.org/10.1029/WR018i001p00107
Hothorn T, Zeileis A, Farebrother RW, Cummins C (2022) Lmtest: Testing linear regression models. R package version 0.9-40, https://CRAN.R-project.org/package=lmtest
Hyndman R (2023) Fma: Data sets from "forecasting: Methods and applications" by makridakis, wheelwright & hyndman (1998). R package version 2.5, https://CRAN.R-project.org/package=fma
Hyndman R, Athanasopoulos G, Bergmeir C, et al (2023) Forecast: Forecasting functions for time series and linear models. R package version 8.21, https://CRAN.R-project.org/package=forecast
Kassambara A (2023) Ggpubr: ggplot2 based publication ready plots. R package version 0.6.0, https://rpkgs.datanovia.com/ggpubr/
Kelley D, Richards C (2023) Oce: Analysis of oceanographic data. R package version 1.8-1, https://dankelley.github.io/oce/
Kendall MG (1975) Rank correlation methods, 4th edn. Charles Griffin, London, UK
Kirchgässner G, Wolters J (2007) Introduction to modern time series analysis. Springer-Verlag, Berlin, Germany
Kohn R, Schimek MG, Smith M (2000) Spline and kernel regression for dependent data. In: Schimek MG (ed) Smoothing and regression: Approaches, computation, and application. John Wiley & Sons, Inc., New York, pp 135–158
Kreiss J-P, Paparoditis E, Politis DN (2011) On the range of validity of the autoregressive sieve bootstrap. Annals of Statistics 39:2103–2130. https://doi.org/10.1214/11-AOS900
Krispin R (2020) TSstudio: Functions for time series analysis and forecasting. R package version 0.1.6, https://github.com/RamiKrispin/TSstudio
Latifovic R, Pouliot D (2007) Analysis of climate change impacts on lake ice phenology in Canada using the historical satellite data record. Remote Sensing of Environment 106:492–507. https://doi.org/10.1016/j.rse.2006.09.015
Li WK (1994) Time series models based on generalized linear models: Some further results. Biometrics 50:506–511. https://doi.org/10.2307/2533393
Ligges U, Short T, Kienzle P (2021) Signal: Signal processing. R package version 0.7-7, https://CRAN.R-project.org/package=signal
Ljung GM, Box GEP (1978) On a measure of lack of fit in time series models. Biometrika 65:297–303. https://doi.org/10.1093/biomet/65.2.297
Lomb NR (1976) Least-squares frequency analysis of unequally spaced data. Astrophysics and Space Science 39:447–462. https://doi.org/10.1007/BF00648343
Lyubchich V (2016) Detecting time series trends and their synchronization in climate data. Intelligence Innovations Investments 12:132–137. https://www.researchgate.net/publication/318283780_Detecting_time_series_trends_and_their_synchronization_in_climate_data
Lyubchich V, Gel YR (2016) A local factor nonparametric test for trend synchronism in multiple time series. Journal of Multivariate Analysis 150:91–104. https://doi.org/10.1016/j.jmva.2016.05.004
Lyubchich V, Gel YR, El‐Shaarawi A (2013) On detecting non‐monotonic trends in environmental time series: A fusion of local regression and bootstrap. Environmetrics 24:209–226. https://doi.org/10.1002/env.2212
Lyubchich V, Gel YR, Vishwakarma S (2023) Funtimes: Functions for time series analysis. R package version 9.1, https://CRAN.R-project.org/package=funtimes
Lyubchich V, Nesslage G (2020) Environmental drivers of golden tilefish fisheries v1.0. Version v1.0. Zenodo
Lyubchich V, Wang X, Heyes A, Gel YR (2016) A distribution-free m-out-of-n bootstrap approach to testing symmetry about an unknown median. Computational Statistics & Data Analysis 104:1–9. https://doi.org/10.1016/j.csda.2016.05.004
Marinova D, McAleer M (2003) Modelling trends and volatility in ecological patents in the USA. Environmental Modelling & Software 18:195–203. https://doi.org/10.1016/S1364-8152(02)00079-8
McLeod AI (2022) Kendall: Kendall rank correlation and mann-kendall trend test. R package version 2.2.1, http://www.stats.uwo.ca/faculty/aim
Nason GP (2008) Wavelet methods in statistics with R. Springer, New York, NY, USA
Nesslage G, Lyubchich V, Nitschke P, et al (2021) Environmental drivers of golden tilefish (Lopholatilus chamaeleonticeps) commercial landings and catch-per-unit-effort. Fisheries Oceanography 30:608–622. https://doi.org/10.1111/fog.12540
Noguchi K, Gel YR, Duguay CR (2011) Bootstrap-based tests for trends in hydrological time series, with application to ice phenology data. Journal of Hydrology 410:150–161. https://doi.org/10.1016/j.jhydrol.2011.09.008
O’Hara-Wild M, Hyndman R, Wang E (2023a) Fable: Forecasting models for tidy time series. R package version 0.3.3, https://CRAN.R-project.org/package=fable
O’Hara-Wild M, Hyndman R, Wang E (2023b) Feasts: Feature extraction and statistics for time series. R package version 0.3.1, https://CRAN.R-project.org/package=feasts
Park C, Hannig J, Kang K-H (2014) Nonparametric comparison of multiple regression curves in scale-space. Journal of Computational and Graphical Statistics 23:657–677. https://doi.org/10.1080/10618600.2013.822816
Park C, Vaughan A, Hannig J, Kang K-H (2009) SiZer analysis for the comparison of time series. Journal of Statistical Planning and Inference 139:3974–3988. https://doi.org/10.1016/j.jspi.2009.05.003
Pearl J (2009) Causality: Models, reasoning, and inference, 2nd edn. Cambridge University Press, Cambridge, UK
Pedersen TL (2022) Patchwork: The composer of plots. R package version 1.1.2, https://CRAN.R-project.org/package=patchwork
Perperoglou A, Sauerbrei W, Abrahamowicz M, Schmid M (2019) A review of spline function procedures in R. BMC Medical Research Methodology 19: https://doi.org/10.1186/s12874-019-0666-3
Pfaff B (2022) Urca: Unit root and cointegration tests for time series data. R package version 1.3-3, https://CRAN.R-project.org/package=urca
Pinheiro J, Bates D, R Core Team (2023) Nlme: Linear and nonlinear mixed effects models. R package version 3.1-162, https://svn.r-project.org/R-packages/trunk/nlme/
Powell AM, Xu J (2011) Abrupt climate regime shifts, their potential forcing and fisheries impacts. Atmospheric and Climate Sciences 1:33. https://doi.org/10.4236/acs.2011.12004
Rebane G, Pearl J (1987) The recovery of causal poly-trees from statistical data. In: Proceedings of the third annual conference on uncertainty in artificial intelligence. pp 222–228
Rice J (1984) Bandwidth choice for nonparametric regression. The Annals of Statistics 12:1215–1230. https://doi.org/10.1214/aos/1176346788
Ruf T (1999) The Lomb–Scargle periodogram in biological rhythm research: Analysis of incomplete and unequally spaced time-series. Biological Rhythm Research 30:178–201. https://doi.org/10.1076/brhm.30.2.178.1422
Ruf T, C original by Press et al. partially based on, Python module Astropy. the (2022) Lomb: Lomb-scargle periodogram. R package version 2.1.0, https://CRAN.R-project.org/package=lomb
Rydberg TH (2000) Realistic statistical modelling of financial data. International Statistical Review 68:233–258. https://doi.org/10.2307/1403412
Scargle JD (1982) Studies in astronomical time series analysis. II – statistical aspects of spectral analysis of unevenly spaced data. Astrophysical Journal 263:835–853. https://doi.org/10.1086/160554
Schloerke B, Cook D, Larmarange J, et al (2021) GGally: Extension to ggplot2. R package version 2.1.2, https://CRAN.R-project.org/package=GGally
Seidel DJ, Lanzante JR (2004) An assessment of three alternatives to linear trends for characterizing global atmospheric temperature changes. Journal of Geophysical Research: Atmospheres 109: https://doi.org/10.1029/2003JD004414
Shumway RH, Stoffer DS (2011) Time series analysis and its applications with R examples, 3rd edn. Springer, New York, NY, USA
Shumway RH, Stoffer DS (2014) Time series analysis and its applications with R examples, 3-EZ. Free Texts in Statistics
Shumway RH, Stoffer DS (2017) Time series analysis and its applications with R examples, 4th edn. Springer, New York, NY, USA
Sievert C, Parmer C, Hocking T, et al (2023) Plotly: Create interactive web graphics via plotly.js. R package version 4.10.2, https://CRAN.R-project.org/package=plotly
Siskey MR, Lyubchich V, Liang D, et al (2016) Periodicity of strontium:calcium across annuli further validates otolith-ageing for Atlantic bluefin tuna (Thunnus thynnus). Fisheries Research 177:13–17. https://doi.org/10.1016/j.fishres.2016.01.004
Soliman M, Lyubchich V, Gel YR (2019) Complementing the power of deep learning with statistical model fusion: Probabilistic forecasting of influenza in Dallas County, Texas, USA. Epidemics 28:100345. https://doi.org/10.1016/j.epidem.2019.05.004
Stasinopoulos DM, Rigby RA (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software 23:1–46. https://doi.org/10.18637/jss.v023.i07
Stasinopoulos M, Rigby B (2023) Gamlss: Generalised additive models for location scale and shape. R package version 5.4-12, https://www.gamlss.com/
Stasinopoulos M, Rigby B, De Bastiani F, Merder J (2023) Gamlss.ggplots: Plotting generalised additive model for location, scale and shape. R package version 2.1-2, https://www.gamlss.com/
Stasinopoulos M, Rigby B, Eilers P (2016) Gamlss.util: GAMLSS utilities. R package version 4.3-4, http://www.gamlss.org/
Stoffer D, Poison N (2023) Astsa: Applied statistical time series analysis. R package version 2.0, https://CRAN.R-project.org/package=astsa
Taylor JW, Buizza R (2004) A comparison of temperature density forecasts from GARCH and atmospheric models. Journal of Forecasting 23:337–355. https://doi.org/10.1002/for.917
Trapletti A, Hornik K (2023) Tseries: Time series analysis and computational finance. R package version 0.10-54, https://CRAN.R-project.org/package=tseries
Tsay RS (2005) Analysis of financial time series, 2nd edn. John Wiley & Sons, Hoboken, NJ, USA
Vilar-Fernández JM, González-Manteiga W (2004) Nonparametric comparison of curves with dependent errors. Statistics 38:81–99. https://doi.org/10.1080/02331880310001634656
Vogelsang TJ, Franses PH (2005) Testing for common deterministic trend slopes. Journal of Econometrics 126:1–24. https://doi.org/10.1016/j.jeconom.2004.02.004
Wang L, Akritas MG, Van Keilegom I (2008) An ANOVA-type nonparametric diagnostic test for heteroscedastic regression models. Journal of Nonparametric Statistics 20:365–382. https://doi.org/10.1080/10485250802066112
Wickham H (2023) Downlit: Syntax highlighting and automatic linking. R package version 0.4.3, https://CRAN.R-project.org/package=downlit
Wickham H, Chang W, Henry L, et al (2023a) ggplot2: Create elegant data visualisations using the grammar of graphics. R package version 3.4.2, https://CRAN.R-project.org/package=ggplot2
Wickham H, François R, Henry L, et al (2023b) Dplyr: A grammar of data manipulation. R package version 1.1.2, https://CRAN.R-project.org/package=dplyr
Wickham H, Hester J, Bryan J (2023c) Readr: Read rectangular text data. R package version 2.1.4, https://CRAN.R-project.org/package=readr
Wickham H, Hester J, Ooms J (2023d) xml2: Parse XML. R package version 1.3.4, https://CRAN.R-project.org/package=xml2
Wood S (2023) Mgcv: Mixed GAM computation vehicle with automatic smoothness estimation. R package version 1.8-42, https://CRAN.R-project.org/package=mgcv
Wood SN (2006) Generalized additive models: An introduction with r. Chapman; Hall/CRC, New York, NY, USA
Wooldridge JM (2013) Introductory econometrics: A modern approach, 5th edn. Cengage Learning, Mason, OH, USA
Wuertz D, Chalabi Y, Setz T, Maechler M (2022) fGarch: Rmetrics - autoregressive conditional heteroskedastic modelling. R package version 4022.89, https://www.rmetrics.org
Xie Y (2023) Knitr: A general-purpose package for dynamic report generation in r. R package version 1.42, https://yihui.org/knitr/
Zeger SL, Qaqish B (1988) Markov regression models for time series: A quasi-likelihood approach. Biometrics 44:1019–1031. https://doi.org/10.2307/2531732
Zeileis A (2019) Dynlm: Dynamic linear regression. R package version 0.3-6, https://CRAN.R-project.org/package=dynlm
Zhang T (2013) Clustering high-dimensional time series based on parallelism. Journal of the American Statistical Association 108:577–588. https://doi.org/10.1080/01621459.2012.760458
Zuur A, Ieno EN, Walker NJ, et al (2009) Mixed effects models and extensions in ecology with R. Springer, New York